| | Meadow Park: Curriculum Map Computing (2025-2026) v1 | | | | | ND/G | | |---|---|--|--|---|---|---|--| | Key Stage | Year Group | Subject | Teacher | Programm | e of Study | | | | KS3 | 7/8/9 | Computing | Mr Dunn | KS3 ICT | (NCCE) | | | | Autumn A Topic(s) | | Autumn B
Topic(s) | Spring A Topic(s) | Spring B Topic(s) | Summer A Topic(s) | Summer B Topic(s) | | | | (-) | - 1 - (-) | Year 7 | - F- X-7 | -1(-7 | - P - X-7 | | | puting systems lamental eleme up a compute Explain the di between a ge computing sy | r system. fference neral-purpose | Modelling data using spreadsheets / Media Publishing • Use basic formulas with cell references to perform calculations in | Media – Animations Add, delete, and move objects. Scale and rotate objects | Representations: from clay to silicon Representing numbers and text using binary digits. List examples of representations. Provide examples of | Mobile app development Using event-driven programming to create an online gaming app. Identify when a problem needs to be broken down. | Introduction to Python programming Applying the programming construct of sequence, selection, and iteration in Python • Describe what algorithms and programs are and how | | | purpose-built
Recall that a
computing sy
for executing
Recall that a
sequence of i | device. general-purpose stem is a device programs. program is a nstructions that tions that are to | a spreadsheet (+, -, *, /). Use the autofill tool to replicate cell data" Identify columns, rows, cells, and cell references in spreadsheet software. Use formatting techniques in a spreadsheet. Create appropriate | Use a material to add colour to objects. Add, move, and delete keyframes to make basic animations. | how different representations are appropriate for different tasks. Recall that representations are used to store, communicate, and process information". | Implement and customize GUI elements to meet the needs of the user". Develop a partially complete application to include additional functionality. | they differ. Locate and correct. common syntax error Recall that a program written in a programming language needs to be translate in order to be execut by a machine. Write simple Python programs that display messages, assign val to variables, and rece | | | programs Describe the floor hardware com in computing Recall that all | stems work rder to execute function of the nponents used systems computing ardless of form, r structure | charts in a spreadsheet. Recognise DTP file types. Develop scale and orientation techniques. Edit backgrounds and layers. Use scaling and formatting tools | Play, pause, and move through the animation using the timeline. Create useful names for objects. Join multiple objects together using parenting. | Measure the length of a representation as the number of symbols that it contains. Provide examples of how symbols are carried on physical media. Recall that characters can be represented as sequences of symbols and list examples of character coding schemes. | Recognise that events can control the flow of a program. Use user input in an event-driven programming environment. Use variables in an event-driven programming environment. | keyboard input". Describe the semanti of assignment statements. Receive input from the keyboard and converto a numerical value. Use simple arithmetic expressions in assignment statement to calculate values". | | | Week 0 | | | | | | | |---|---|--|--|--|---|--| | <u>Year 8</u> | | | | | | | | Computing systems Exploring the fundamental elements that make up a computer system. | Modelling data using
spreadsheets / Media
Publishing | <u>Media – Animations</u> | Representations: from clay to silicon Representing numbers and text using binary digits. | Mobile app development Using event-driven programming to create an online gaming app. | Introduction to Python programming Applying the programming constructs of sequence, selection, and iteration in Python. | | | Analyse how the hardware components used in computing systems work together in order to execute programs. Define what an operating system is and recall its role in controlling program execution. | " -Collect data Explain the difference between data and information. Explain the difference between primary and secondary sources of data". " -Analyse data Create appropriate charts in a spreadsheet Use the functions SUM, COUNTA, MAX, and MIN in a spreadsheet. | Use edit mode and extrude. Use loop cut and face editing. Apply different colours to different parts of the same model. Use proportional editing. | "-Explain what binary digits (bits) are, in terms of familiar symbols such as digits or letters. Measure the size or length of a sequence of bits as the number of binary digits that it contains". | Establish user needs when completing a creative project. Identify and fix common coding errors. Pass the value of a variable into an object". Apply decomposition to break down a large problem into more manageable steps. | Generate and use random integers. Use binary selection (if, else statements) to control the flow of program execution. Use relational operators to form logical expressions". | | | Describe how hardware is built out of increasingly complex logic circuits. Use logic gates to construct logic circuits, and associate these with logical operators and expressions. | Create an appropriate range of DTP templates for prescribed purposes. Research and edit information from external sources. Develop the use of gridline controls within the development of content. Understand the need for optimisation. | Use the knife tool. Use subdivision. Create project file types using effective file referencing. | Convert a decimal numbers to binary and vice versa. Describe how natural numbers are represented as sequences of binary digits". | Use a block-based programming language to create a sequence. Use user input in a block-based programming language. Use variables in a block-based programming language". | Describe how iteration (while statements) controls the flow of program execution. Use multi-branch selection (if, else-if, else statements) to control the flow of program execution". | | | | | <u>Year 9</u> | | | | | | Computing systems Exploring the fundamental elements that make up a computer system. | Modelling data using
spreadsheets / Media
Publishing | <u>Media – Animations</u> | Representations: from clay to silicon Representing numbers and text using binary digits. | Mobile app development Using event-driven programming to create an online gaming app. | Introduction to Python programming Applying the programming constructs of sequence, selection, and iteration in Python. | | | Associate the use of artificial intelligence with moral dilemmas. Describe how machine learning differs from traditional programming. Learn about the steps involved in training machines to perform tasks (gathering data, training, testing). | Analyse data. Use a spreadsheet to sort and filter data. Use the functions AVERAGE, COUNTIF, and IF in a spreadsheet". Use conditional formatting in a spreadsheet". | Add and edit set lighting. Set up the camera. Compare different render modes. Optimize files for intended target output devices. | Convert between different units and multiples of representation size. Provide examples of the different ways that binary | Reflect and react to user feedback. Use a block-based programming language to include sequencing and selection. Use user input in a block-based programming | Use iteration (while loops) to control the flow of program execution. Use variables as counters in iterative programs". | | | Identify examples of artificial intelligence and machine learning in the real world Provide broad definitions of 'artificial intelligence' and 'machine learning'. Explain the implications of sharing program code. | Use the functions
AVERAGE, COUNTIF,
and IF in a
spreadsheet". Use conditional
formatting in a
spreadsheet". Explore professional
typography and
practices. Understand the
difference between
graphical design
applications and DTP
suites. Recognise business
expectations. | Plan an animation for a target brief scenario. Utilise information repositories to inform and develop knowledge and practice. Create a 3–10 second animation. Render out the animation. | digits are physically represented in digital devices". • Apply all of the skills covered in this unit to a series of set problems. • Explore the role of logic gates types. | language Use variables in a block-based programming language". Evaluate the success of the programming project Use a block-based programming language to include sequencing and selection. Use user input in a block-based programming language. Use variables in a block-based programming | Combine iteration and selection to control the flow of program execution. Use Boolean variables as flags". Use effective tags within coding sequences. | |---|---|--|--|---|--| | Assessment Tasks | Assessment Tasks | Assessment Tasks | Assessment Tasks | language". Assessment Task | Assessment Tasks | | Learners will present findings. | Learners will create a | Learners will create a range | Learners will use online tools | Learners will create a | Learners will develop a range | | Learners utilise a developmental evidence | range of developmental | of media documents for a | and PC apps to develop | range of project file | of coding scripts and | | approach to electronic work. | spreadsheet file evidence. | range of set purposes and tasks. | evidence. | types to demonstrate their learning journey which will evidence composition. | evidence developments
through screen shots and
annotations | | Learners will develop a portfolio of evidence Set question challenges. | Learners will answer written questions and solve challenge problems. | Learners will utilise effective etiquette and considerations of end client needs. | Learners undertake offline
written challenge
assessment tasks. | Learners will answer written and verbal challenges and set questions. | Learners will provide feedback through targeted and scaffolded questioning. | | Damanal Damalanna ant | Daniel Daniel annual | D | Davis and Davids and | Danis and Danisla and | D | |------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Personal Development | | Understand how information is | Appreciate how coding is | Learners will appreciate | Understand how | Learners will have started | Learners will start to | | customized to target audiences | intrinsic to input, process | subject overlaps of other | underlying principles of | to consider other end user | appreciate their own | | | and outputs of everyday | subjects when developing | digital representations are | requirements and relate | personal interactions with | | | electronic products and | new content. | applied in their own real | their own experiences | website coding and some of | | | devices | | settings | | the processes that contribute | | | | | | | to its development | | Reading &Writing | | Learners will explore a range of | Learners will develop a | Learners will use | Learners will develop | Combine information | Describing key words and | | technical literacy and utilise its | new range of technical | professional etiquette and | a new range of | from a range of sources | linking concepts | | application within their | spreadsheet language | terminology. | technical literacy | line a range or ecanoes | g comospic | | development phases | terminology | , | , | | | | Speaking & Listening | | oponiming or allocoming | | opening a necessary | | | | | Learners will be challenged to | Learners will pair share | Learners will use round robin | Round robins, class | Small groups to determine | Learners are to consider the | | explain their technical literacy | experiences such as problem | opportunities to re-develop | discussions alongside pair | how to solve teacher set | assumptions and the context of | | and pair share it | solving and embrace | and (or) re-purpose their | sharing will further | problem scenarios. | solutions they have | | | challenging scaffolded | solutions | facilitate knowledge and | | developed with their peers | | | questioning. | | understanding | | | | Numerous C Mathematical | Numerous C Mathematical | Numara a C Mathematical | Numerous 9 Mathematical | Numerous C Mathematical | Numerous C Mathematical | | Numeracy & Mathematical Reasoning | | Understand and calculate | Numerical functions within | Numerical settings and control | Numerical controls and | Using mathematical | Varying, calculating and | | memory and processing | spreadsheets to control | features within the application | calculations using binary | procedures, determining | changing the values in coding. | | features. | outcomes. | technologies. | coding. | appropriate variables. | changing the values in county. | | reatures. | outcomes. | teermologies. | coung. | appropriate variables. | | | | | | | | | | | | | | | | | Creative Media | | Desktop | Utilise spreadsheet software. | Use open source and | Use online and offline | Object orientated coding | Online scripting coding | | PCs/Whiteboard/Graphical | | commercial applications for | applications. | software, games and | compliers and desktop PC | | applications. | | media development. | | quizzes. | software. |